

ANÁLISE DE EMISSÕES DE GASES DE EFEITO ESTUFA CONSIDERANDO O SERVIÇO DE PAVIMENTAÇÃO EM VIA URBANA

Claudeny Santana

Doutoranda, Programa de Engenharia de Transportes – COPEE/UFRJ

SUMÁRIO

- INTRODUÇÃO
- OBJETIVO
- METODOLOGIA
- RESULTADOS
- CONCLUSÃO

INTRODUÇÃO

A construção de pavimentos, um aspecto fundamental da infraestrutura urbana, envolve um ciclo de vida complexo que abrange a extração de materiais, produção, transporte, construção, manutenção e gestão ao final da vida útil, sendo que cada estágio contribui para as emissões de gases de efeito estufa e para a degradação ambiental (Babashamsi et al., 2015; Zhao et al., 2015).

INTRODUÇÃO

A Avaliação do Ciclo de Vida (ACV) surgiu como uma ferramenta para avaliar as cargas ambientais associadas a produtos e serviços, incluindo a construção de pavimentos. Essa metodologia permite a identificação das etapas e processos críticos que contribuem para a pegada ambiental total, orientando, assim, o desenvolvimento de estratégias de ecodesign no setor de pavimentação (Praticò et al., 2020).

INTRODUÇÃO

- ISO 14044:2006 estabelece requisitos e diretrizes para a Avaliação do Ciclo de Vida (ACV):
- definição do objetivo e escopo da ACV;
- Análise de Inventário do Ciclo de Vida (ICV);
- Avaliação de Impacto do Ciclo de Vida (AICV);
- Interpretação dos resultados, relatórios e revisão crítica e as limitações da ACV e as condições para uso de escolhas metodológicas.

Aplicações diretas:

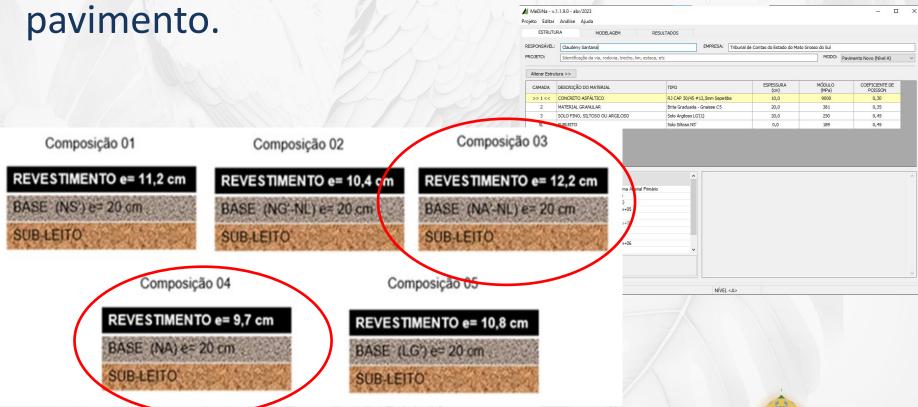
- Desenvolvimento e melhoria do produto
- Planejamento estratégico
- Elaboração de políticas públicas
- Marketing
- Outras

OBJETIVO

Compreender a quantidade de gases de efeito estufa emitida durante a construção de pavimentos flexíveis compostos por concreto asfáltico, analisando diferentes tipos de solo utilizados em sua estrutura. Para tanto, adota-se o sistema "Cradle to Laid" preconizado pela norma EN 15978:2011, abrangendo desde a extração das matérias-primas até a conclusão da obra.

- Produção de materiais (Etapa A1);
- Transporte dos materiais (Etapa A2);
- A usinagem da mistura asfáltica (Etapa A3);
- A transporte da massa asfáltica (Etapa A4);
- e as fases de execução e acabamento, como imprimação, compactação e aplicação do revestimento (Etapas B1, B2, B3, B4 e C1).

- Dados primários: obra executada na cidade de Teresina-PI (meio urbano);
- Dados secundários: Ecoinvent® 3.10, e integrados por meio do software SimaPro®. As emissões de CO₂ eq. foram calculadas considerando o consumo energético de cada etapa e o impacto ambiental dos equipamentos utilizados;

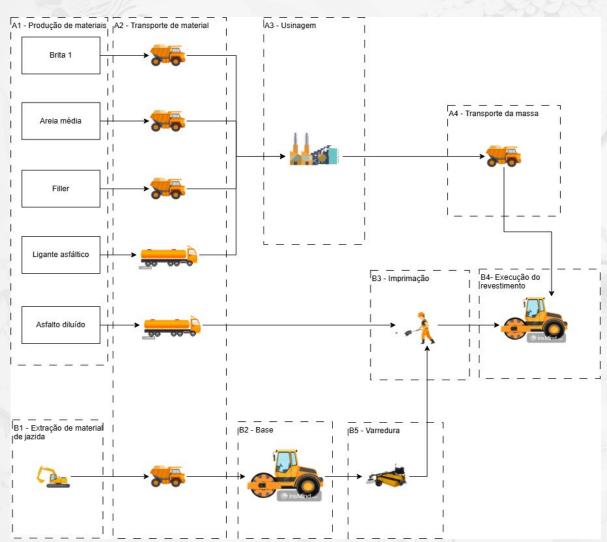


 MeDiNa®: utilizado pavimento.

para

dimensionar

C


• Unidade funcional: 1,00 km de via por uma seção transversal de 7,00 m.

Item	Discriminação			
4.2	Base de solo estabilizado granul. s/ mistura (e = 20 cm)			
4.3	Transporte local em caminhão basculante de material de jazida para base com DMT = 5,40 km			
4.4	Imprimação			
4.5	Aquisição de asfalto diluido CM-30			
4.5	Pintura de ligação			
4.7	Aquisição de emulsão asfaltico RR-1C			
4.8	Concreto betuminoso usinado a quente - C.B.U.Q - capa de rolamento			
4.9	Aquisição de cimento asfáltico CAP-50/70			
4.10	Transporte comercial material betuminoso a quente com DMT= 620,00 km CAP-50/70 - cidad			
4.11	Transporte comercial material betuminoso a frio CM-30 e RR-1C com DMT= 624,00 km			
4.12	Transporte comercial de brita em rod pavimentada DMT= 40,00 km			
4.13	Transporte local de areia em rod pavimentada DMT = 10,00 km			
4.14	Transporte local de filler em rod pavimentada DMT= 12,00 km			
4.15	Transporte local da massa asfaltca com DMT = 23,00 km			

Unidade padronizada: CO₂ equivalente, usada para expressar o impacto das emissões de GEE:

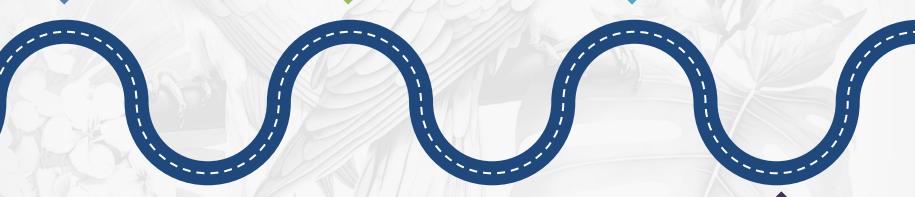
- Dioxido de carbono (Co₂);
- Metano (CH₄);
- Óxido nitroso (N₂O) e
- · Gases fluorados.

Basea-se na sua capacidade de aquecimento global (GWP).

Exemplo:

1 kg de CH₄ equivale a 28 Kg de Co₂ –eq.

1 kg de N₂O equivale a 265 de Co₂ – eq.


ESCOLHA DOS PAVIMENTOS COM 5 DIFERENTES TIPOS DE SOLOS. ACV: MATÉRIA PRIMA, PRODUÇÃO, TRANSPORTE E CONSTRUÇÃO

IMPACTOS AMBIENTAI: GEE

DIMENSIONAMENTO DOS PAVIMENTOS (Medina®) 4

CÁLCULOS DE QUANTITATIVOS CONFORME UF 7

ANÁLISE DOS RESULTADOS: :CO2 equivalente e custos

• Dimensionamento (MeDiNa®):

Características	pav01 (NS')	pav02 (NG')	pav03 (NA')	pav04 (NA)	pav05 (LG"
Tipo de Via	SAP*	SAP*	SAP*	SAP*	SAP*
Número N inicial	5 x 105	5 x 105	5 x 105	5 x 105	5 x 105
Período de Projeto	10	10	10	10	10
Tx. Crescimento	3%	3%	3%	3%	3%
Número N final	5,73 x 106	5,73 x 106	5,73 x 106	5,73 x 106	5,73 x 106
AT**	29,2%	28,9%	29%	29%	28,9%
ATR***	2,6mm	2,7mm	2,3mm	10,1mm	3,2mm
Contrib. subleito	1,56mm	1,72mm	1,28mm	1,83mm	1,65mm

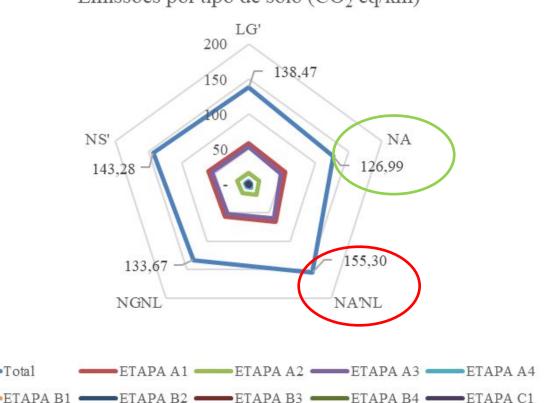
Tabela 2 - Resultados do dimensionamento conforme o tipo de solo na camada de base.

*: Sistema arterial primário; **: Área trincada; ***: Afundamento de trilha de roda.

Quantitativos:

4.0 ITEM	UNID.	NS' Quant. (1 km)	NG-NL Quant. (1 km)	NA'-NL Quant. (1 km)	NA Quant. (1 km)	LG' Quant. (1 km)
4.2	m³	2213,07	2213,07	2213,07	2213,07	2213,07
4.3	t.km	21989,02	21989,02	21989,02	21989,02	21989,02
4.4	m^2	7306,39	7306,39	7306,39	7306,39	7306,39
4.5	t	8,77	8,77	8,77	8,77	8,77
4.6	m^2	7306,39	7306,39	7306,39	7306,39	7306,39
4.7	t	3,66	3,66	3,66	3,66	3.66
4.8	t	1714,22	1591,78	1867,28	1484,64	1653
4.9	t	72,34	67,17	78,8	65,25	69,75
4.10	t	72,34	67,17	78,80	65,25	69,75
4.11	t	29,12	27,04	31,72	25,22	28,08
4.12	t.km	5147,85	5147,85	5147,85	5147,85	5147,85
4.13	t.km	5571,90	5571,90	5571,90	5571,90	5571,90
4.14	t.km	245,68	245,68	245,68	245,68	245,68
4.15	t.km	1714,22	1591,78	1867,28	1484,64	1653

Tabela 3. Quantitativos calculados para cada serviço da obra.



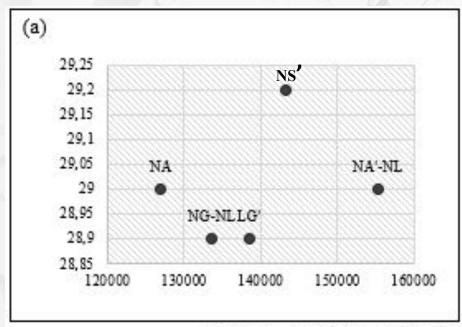
• GEE por CO₂ – eq/km:

Emissões por tipo de solo (CO₂ eq/km)

NA'NL maiores emissões totais de 155.303,48 kg CO₂ eq/km.

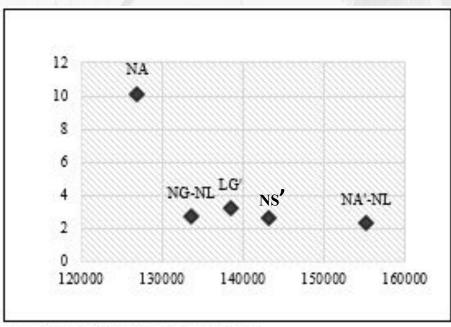
NA emitiu 126.992,79 kg CO₂ eq/km.

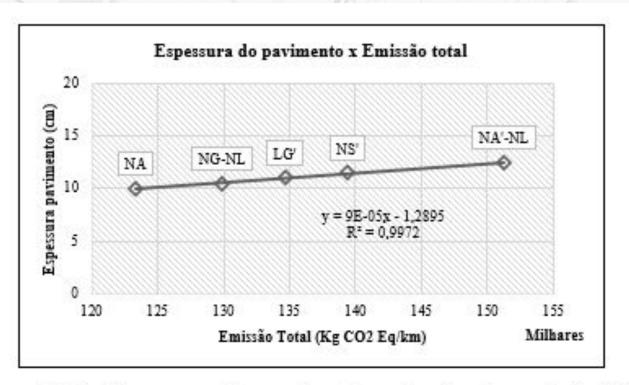
A1 (produção de materiais) e etapa A3 (usinagem), sendo a NA'NL a mais poluente nessas etapas, com 66.044,98 kg CO, eq/km em A1 e **60.673,10** kg CO, eq/km em A3.



Tota1

 Influência de Emissões ao Desempenho dos Pavimentos




Figura 4 - (a) AT e Emissão total e (b) ATR x Emissão Total

 Influência de Emissões ao Desempenho dos Pavimentos

Espessura GEE

Figura 5. Relação espessura do revestimento por tipo de solo e emissão GEE.

CONCLUSÕES

- Confirmou-se que que as fases de produção de materiais (A1) e usinagem (A3) são as maiores responsáveis pelas emissões de gases de efeito estufa (GEE) na ACV;
- Solos como NS' e NA'NL, com menor resistência estrutural, geram as maiores emissões de CO2, sugerindo que, além do desempenho técnico, é essencial considerar o impacto ambiental ao selecionar o tipo de solo para a base de pavimentos.

CONCLUSÕES

- As fases de transporte (A2 e A4) e execução e acabamento (B1, B2, B3, B4 e C1) demonstram menor impacto ambiental, mas não devem ser ignoradas!!!
- Solos como NG-NL e LG' apresentam menores emissões associadas a falhas estruturais, tornando-os opções mais sustentáveis (RAP é uma opção!);
- Uso de gás natural ou energia solar nas usinas de asfalto são alternativas viáveis;

CONCLUSÕES

• A racionalização das rotas de transporte e o uso de veículos mais eficientes podem reduzir as emissões na fase de transporte (A2 e A4), (caminhões elétricos ou híbridos pode ser uma solução de longo prazo).

LIMITAÇÕES DA PESQUISA

- Os principais fatores limitantes desta pesquisa é a ausência de um inventário robusto com dados nacionais detalhados sobre as práticas de pavimentação, o que restringe a representatividade e precisão das análises de ACV no contexto brasileiro.
- Estudos futuros devem investigar o impacto de diferentes técnicas de estabilização e do uso de materiais reciclados na redução de emissões e no desempenho estrutural das camadas de pavimentos,

REFERÊNCIAS

- IBRAHIM, H.; MARINI, S.; FARINA, A.; LANOTTE, M. Integrating Mechanistic-Empirical Pavement Analysis in the Life Cycle Assessment Use Phase and Monetization of Environmental Impacts to Promote Low Carbon Transportation Materials. Transportation Research Record, p. 1–15, 2024. Disponível em: https://doi.org/10.1177/03611981241253576. Acesso em: 19 jun. 2024.
- ISO. ISO 14040: Environmental Management and Life Cycle Assessment Principles and Framework. Geneva: International Organization for Standardization, 2006.
- ISO. ISO 14044: Environmental Management and Life Cycle Assessment Requirements and Guidelines. Geneva: International Organization for Standardization, 2006b.
- LU, G. et al. The environmental impact evaluation on the application of permeable pavement based on life cycle analysis. Journal of Traffic and Transportation Engineering (English Edition), v. 6, n. 3, p. 288–296, 2019.
- MAUÉS, L.M.; BELTRÃO, N.; SILVA, I. GHG Emissions Assessment of Civil Construction Waste Disposal and Transportation Process in the Eastern Amazon. Sustainability 2021, 13, 5666. https://doi.org/10.3390/su13105666

OBRIGADA!!!

claudenysantana@pet.coppe.ufrj.br

WhatsApp: (86) 99920-1019

